Chapter 6.3 part 2

Section 6.3
Generalizations (to an arbitrary commutative ring 2 with identity) of Th 2.8 and Th 5. 10
Recall Th 2.8 Th 5.10
$p \in \nabla_{L}$-integer or $p \in F[x]$-non-constant polynomial (F is a field)
The following three conditions are equivalent:
(1) p is prime $\xi \quad p$ is irreducible
(2) $\pi_{p}=\pi /(p)$ is a field $\} \quad F[x] /(p)$ is a field
(3) $\pi / L_{p}=\nabla /(p)$ is an $\quad F[x] /(p)$ is an integral domain integral domain
Both ∇_{2} and $E[x]$ belong to a certain special class of rings. For more general ring, such a theorem is not true.
R is a comcuretative ring with identity
Ne want to find a condition on an ideal $I \subseteq R$ which is an analog of being prime/irreducible for the generator if the ideal was principal.
There are 2 ways to do that.
(1) Def An ideal $P \subset R(P \neq R)$ is said to be prime if $b c \in P$ implies $b \in P$ or $c \in P$ (or both) irreducible $P \in F[x]$
Clearly, for a prime $p \in Z_{2}$, the ideal (p) is prime.
Tared $p e(p)$ bureaus pl η_{2} Th in
$F[x]$ Th 4.12 (b)
Th 6.14 [Equivalence of (1) and (3)] that is $b \in(p)$ or $c \in(c)$ (or both)
An ideal $P \subset R$ is prime iff R / P is an integral domain
Ex 7 shows that R / P for a prime ideal P is not necessarily a field.

$$
R=\pi[x] \quad P=(x)
$$

(1) P is a prime ideal
(2) $\nabla_{k}[x] /(x)$ is not a field

Pf (1) Assume $\in(x)$ Wanted: $a \in(x)$ or $b \in(x)$

$$
a b=x f \quad a, b, x, f \in \mathbb{Z}[x]
$$

Pick $x=0$
$a(0) b(0)=0 \quad a(0)$ and $b(0)$ are the constant terms of
That implies $a(0)=0$ or $b(0)=0$
the polynomials a and \& correspondingly

For a polynohnial $c_{0}+\ldots+c_{n} x^{n}$, zero constant term implies either the polynomial is zero, or the polynomial is

$$
x\left(a_{1}+\ldots+c_{n} x^{n-1}\right)
$$

Th either case, $c_{0}+\ldots+c_{n} x^{n} \in(x)$ provided $C_{0}=0$
That is either $a \in(x)$ or $b \in(x)$. The ideal $P=(x)$ is prime.
(2) $\nabla[x] /(x) \simeq \nabla$ - not a field

Let $f: \nabla[x] \rightarrow \nabla /$
$a \longmapsto a(0) \leftarrow$ the constant term of a.

- homomorphism e (from the definition of the operations of addition and multiplication on $\mathbb{Z}[x]$)
$-\operatorname{ker} f=(x)$
- surjective
- use the First Isomorphism Theorem to conclude

$$
\nabla_{2}[x] /(x) \simeq \nabla_{2}
$$

(2) Def An ideal $M \subset R(M \neq R)$ is said to be maximal if whenever $J \subset R$ is an ideal such that $M \subseteq J \subseteq R$, then $J=M$ or $J=R$ (not both).

No "ideal J such that

$$
M \subset J \neq \underset{\neq}{c} R
$$

Jor a prime $p \in \pi_{/}$, the ideal (P) is maximal.
Indeed let $(p) \subseteq J \subseteq \mathbb{Z}_{2}$.
Assume that $(p) \neq J$ i there exists $u \in J, m \notin(p)$ pom
pour, p is prime ineply that $(p, m)=1$ means $a p+b m=1$ for some $a, b \in Z$.
$\left.\begin{array}{l}(p) \subseteq J \text { implies } a p \in J \\ m \in J \text { implies } b m \in J\end{array}\right\}$ imply $a p+b n \in J$, thus $1 \in J$ implies $J=\pi$ by the absorbtion

Prop property of J

If an ideal $I \subseteq R$ is such that there is a unit $u \in R$ which is an element of I, then $I=\mathbb{R}$.
Pf $u^{-1} u=l_{R}$ and $u^{-1} u \in I$ by the absorbtion property of I. Thus $l_{R} \in I$. Again by the absorbtion property of I, for any $r \in R$, $r=\left.r\right|_{R} \in I$.

Th6.15 [Equivalence of (1) and (2)]
Let M be an ideal in R.
M is maximal iff R / M is a field.
Cor. 16 beery maximal ideal is prime.
Pf - Combine Th G.15. Th G.14, and the fact that every field is an integral domain
Example not every prime ideal is maxiveral

$$
R=\mathbb{Z}[x], \quad I=(x)
$$

$\nabla_{2}[x]_{(x)} \simeq \nabla_{2}$ is an integral domain but not a field
From Th G.L4: (x) is a prime ideal in $\mathbb{Z}[x]$
Fran ThG.15: (x) is not maximal in $\mathbb{Z}[x]$
For example (a lengthier argument)

$$
(x) \subset(2, x) \subset \eta[x]
$$

